Formulas for Simple Frames

This section presents formulas for determining the reaction forces and moments acting on simple frames under various simple loadings. The reaction forces and moments acting on frames under more complicated loadings may often be obtained by the superposition of these simple loadings.

Frames & Rings
  1. Frames and Rings
  2. Formulas for Simple Frames
  3. Circular Rings & Arches

The content of this page is taken from the "Stress Analysis Manual," Air Force Flight Dynamics Laboratory, October 1986. Other related chapters from the Air Force "Stress Analysis Manual" can be seen above.

Cases 1 through 9 of Table 5-3 give reaction forces and moments on rectangular frames, both of whose uprights are pinned; and such frames with both uprights fixed are treated by cases 9 through 18 of this table. Table 5-4 gives reaction forces and moments on trapezoidal frames. The first four cases treat such frames with both uprights pinned at the ends, and cases 5 and 6 treat trapezoidal frames with fixed- ended uprights. Table 5-5 gives reaction forces and moments on triangular frames.

Table 5-3
Reaction Forces and Moments on Rectangular Frames

Rectangular Frame Definitions
Case Frame Forces & Moments
1 Rectangular Frame, Case 1
$$ V_A = { P b \over L } $$ $$ V_B = P - V_A $$
$$ H_A = H_B = { 3 P L \over 8 h (2K + 3) } $$

For Special Case:  \( a = b = L/2 \)

$$ V_A = V_B = {P \over 2} $$ Rectangular Frame, Special Case 1
$$ H_A = H_B = { 3 P L \over 8 h (2K + 3) } $$
2 Rectangular Frame, Case 2
$$ V_A = { wb (b + 2c) \over 2L } $$ $$ V_B = wb - V_A $$
$$ H_A = H_B = { wb [6ac + b(3L - 2b)] \over 4hL(2K+3) } $$

For Special Case:  \( a = c = 0 \),  \( b = L \)

$$ V_A = V_B = {wL \over 2} $$ Rectangular Frame, Special Case 2
$$ H_A = H_B = { wL^2 \over 4h(2K + 3) } $$
3 Rectangular Frame, Case 3
$$ V_A = { wbd \over 2L } $$ $$ V_B = { wb \over 2 } - V_A $$
$$ H_A = H_B = { 3wb \over 4Lh (2K + 3) } \left( dL - { b^2 \over 18 } - d^2 \right) $$

For Special Case:  \( a = 0 \),  \( b = L \),  \( d = { L \over 3 } \)

$$ V_A = {wL \over 6} $$ $$ V_B = {wL \over 2} $$ Rectangular Frame, Special Case 3
$$ H_A = H_B = { wL^2 \over 8h(2K + 3) } $$
4 Rectangular Frame, Case 4
$$ V_A = -V_B = { -M \over L } $$
$$ H_A = H_B = { 3 (b - L/2) M \over Lh (2K + 3) } $$
5 Rectangular Frame, Case 5
$$ V_A = -V_B = { -Pa \over L } $$
$$ H_B = { Pa \over 2h } \left[ { bK(a+h) \over h^2 (2K+3) } + 1 \right] $$
$$ H_A = H_B - P $$
6 Rectangular Frame, Case 6
$$ V_A = -V_B = { w(b^2 - a^2) \over 2L } $$
$$ H_B = { w (a^2 - b^2) \over 4h } + { K [ w (a^2 - b^2) (2h^2 - a^2 - b^2) ] \over 8 h^3 (2K + 3) } $$
$$ H_A = H_B + w(b-a) $$

For Special Case:  \( b = 0 \),  \( a = h \)

$$ V_A = -V_B = { -wh^2 \over 2L } $$ Rectangular Frame, Special Case 6
$$ H_B = { wh \over 4 } \left[ 1 + { K \over 2 (2K + 3) } \right] $$
$$ H_A = H_B - wh $$
7 Rectangular Frame, Case 7
$$ V_A = -V_B = {w \over 6L} (2a + b) (b-a) $$
$$ H_B = { -V_A L \over 2h } + { K X_{10} \over h (2K + 3) } $$

where:

$$ \begin{eqnarray} X_{10} &=& { w \over 120 h^2 (a-b) } ~[-30 h^2 b (a^2 - b^2) \nonumber \\ &+& 20 h^2 (a^2 - b^2) + 15 b (a^4 - b^4) - 12 (a^5 - b^5)] \end{eqnarray} $$
$$ H_A = H_B + { w (b-a) \over 2 } $$

For Special Case:  \( b = 0 \),  \( a = L \)

$$ V_A = -V_B = { -wh^2 \over 3L } $$ Rectangular Frame, Special Case 7
$$ H_B = { wh \over 10 } \left({ 4K+5 \over 2K + 3 }\right) $$
$$ H_A = H_B - {wh \over 2} $$
8 Rectangular Frame, Case 8
$$ V_A = -V_B = {-w \over 6L} (a^2 + ac - 2c^2) $$
$$ H_B = { -V_A L \over 2h } + { K X_7 \over (2K + 3)h } $$

where:

$$ \begin{eqnarray} X_7 &=& { w \over 120 h^2 (d-c) } ~[3 (4d^5 + c^5) - 15h (3d^4 + c^4) \nonumber \\ &+& 20 h^2 (2d^3 + c^3) - 15cd^2 (2h-d)^2 ] \end{eqnarray} $$

For Special Case:  \( b = c = 0 \),  \( a = d = h \)

$$ V_A = -V_B = { -wh^2 \over 6L } $$ Rectangular Frame, Special Case 8
$$ H_B = { wh \over 12 } \left[ 1 + { 7K \over 10(2K + 3) } \right] $$
9 Rectangular Frame, Case 9
$$ V_A = -V_B = { -M \over L } $$
$$ H_A = H_B = { 3 [ K(2ab + a^2) + h^2 ] M \over 2h^3 (2K + 3) } $$
10 Rectangular Frame, Case 10
$$ V_A = { Pb \over L } \left[ 1 + { a(b-a) \over L^2 (6K+1) } \right] $$ $$ V_B = P - V_A $$
$$ H_A = H_B = { 3Pab \over 2Lh(K+2) } $$
$$ M_A = {Pab \over L} \left[ {1 \over 2(K+2)} - { (b-a) \over 2L(6K+1)) } \right] $$
$$ M_B = {Pab \over L} \left[ {1 \over 2(K+2)} + { (b-a) \over 2L(6K+1)) } \right] $$

For Special Case:  \( a = b = L/2 \)

$$ V_A = V_B = P/2 $$ Rectangular Frame, Special Case 10
$$ H_A = H_B = { 3PL \over 8h(K+2) } $$
$$ M_A = M_B = { PL \over 8(K+2) } $$
11 Rectangular Frame, Case 11
$$ V_A = {wcd \over L} + { X_1 - X_2 \over L(6K + 1) } $$ $$ V_B = wc - V_A $$
$$ H_A = H_B = { 3 (X_1 + X_2) \over 2h(K+2) } $$
$$ M_A = { X_1 + X_2 \over 2(K+2) } - { X_1 - X_2 \over 2(6K + 1) } $$
$$ M_B = { X_1 + X_2 \over 2(K+2) } + { X_1 - X_2 \over 2(6K + 1) } $$

where:

$$ X_1 = {-wc \over 24L} \left[ {24d^3 \over L} - {6bc^2 \over L} + {3c^2 \over L} + 4c^2 - 24d^2 \right] $$
$$ X_2 = {wc \over 24L} \left[ {24d^3 \over L} - {6bc^2 \over L} + {3c^2 \over L} + 2c^2 - 48d^2 + 24dL \right] $$

For Special Case:  \( a = 0 \),  \( c = b = L \),  \( d = L/2 \)

$$ V_A = V_B = { wL \over 2 } $$ Rectangular Frame, Special Case 11
$$ H_A = H_B = { wL^2 \over 4h(K+2) } $$
$$ M_A = M_B = { wL^2 \over 12(K+2) } $$
12 Rectangular Frame, Case 12
$$ V_A = {wcd \over 2L} + { X_3 - X_4 \over L(6K + 1) } $$ $$ V_B = {wc \over 2} - V_A $$
$$ H_A = H_B = { 3 (X_3 + X_4) \over 2h(K+2) } $$
$$ M_A = { X_3 + X_4 \over 2(K+2) } - { X_3 - X_4 \over 2(6K + 1) } $$
$$ M_B = { X_3 + X_4 \over 2(K+2) } + { X_3 - X_4 \over 2(6K + 1) } $$

where:

$$ X_3 = {-wc \over 2L} \left[ {d^3 \over L} + {c^2 \over 9} + {51c^3 \over 810L} + {c^2b \over 6L} - d^2 \right] $$
$$ X_4 = {wc \over 2L} \left[ {d^3 \over L} + {c^2 \over 18} + {51c^3 \over 810L} - {c^2b \over 6L} - 2d^2 + dL \right] $$

For Special Case:  \( a = 0 \),  \( c = b = L \),  \( d = L/3 \)

$$ V_A = { wL \over 6 } \left[ 1 - {1 \over 10(6K+1)} \right] $$ $$ V_B = { wL \over 3 } \left[ 1 + {1 \over 20(6K+1)} \right] $$ Rectangular Frame, Special Case 12
$$ H_A = H_B = { wL^2 \over 8h(K+2) } $$
$$ M_A = { wL^2 \over 120 } \left( {5 \over K+2} + {1 \over 6K+1} \right) $$
$$ M_B = { wL^2 \over 120 } \left( {5 \over K+2} - {1 \over 6K+1} \right) $$
13 Rectangular Frame, Case 13
$$ V_A = -V_B = { -6 (ab + L^2 K) M \over L^3 (6K + 1) } $$
$$ H_A = H_B = { 3 (b-a) M \over 2Lh (K+2) } $$
$$ M_A = M \left\{ { 6ab(K+2) - L[ a(7K+3) - b(5K-1) ] \over 2L^2 (K+2) (6K+1) } \right\} $$
$$ M_B = M + M_A + V_A L $$
14 Rectangular Frame, Case 14
$$ V_A = -V_B = { -3 P a^2 K \over Lh(6K+1) } $$
$$ H_B = {Pa \over 2h} \left[ {h \over b} - { h + b + K(b-a) \over h(K+2) } \right] $$
$$ H_A = H_B - P $$
$$ M_A = {Pa \over 2h} \left[ {-b (h + b + bK) \over b(K+2)} - h + {3aK \over 6(K+1)} \right] $$
$$ M_B = {Pa \over 2h} \left[ {-b (h + b + bK) \over b(K+2)} + h - {3aK \over 6(K+1)} \right] $$
15 Rectangular Frame, Case 15 Rectangular Frame, Case 15
16 Rectangular Frame, Case 16 Rectangular Frame, Case 16
Rectangular Frame, Case 16
17 Rectangular Frame, Case 17 Rectangular Frame, Case 17
Rectangular Frame, Case 17
18 Rectangular Frame, Case 18 Rectangular Frame, Case 18




Table 5-4
Rectangular Forces and Moments on Trapezoidal Frames

Trapezoidal Frame Definitions
Case Frame Forces & Moments
1 Trapezoidal Frame, Case 1 Trapezoidal Frame, Case 1
2 Trapezoidal Frame, Case 2 Trapezoidal Frame, Case 2
3 Trapezoidal Frame, Case 3 Trapezoidal Frame, Case 3
4 Trapezoidal Frame, Case 4 Trapezoidal Frame, Case 4
5 Trapezoidal Frame, Case 5 Trapezoidal Frame, Case 5
6 Trapezoidal Frame, Case 6 Trapezoidal Frame, Case 6




Table 5-5
Rectangular Forces and Moments on Triangular Frames

Triangular Frame Definitions
Case Frame Forces & Moments
1 Triangular Frame, Case 1 Triangular Frame, Case 1
2 Triangular Frame, Case 2 Triangular Frame, Case 2
3 Triangular Frame, Case 3 Triangular Frame, Case 3
4 Triangular Frame, Case 4 Triangular Frame, Case 4
5 Triangular Frame, Case 5 Triangular Frame, Case 5
6 Triangular Frame, Case 6 Triangular Frame, Case 6
7 Triangular Frame, Case 7 Triangular Frame, Case 7
8 Triangular Frame, Case 8 Triangular Frame, Case 8
9 Triangular Frame, Case 9 Triangular Frame, Case 9
10 Triangular Frame, Case 10 Triangular Frame, Case 10




5.8 Sample Problem - Formulas for Simple Frames

Given: The trapezoidal frame shown in Figure 5-14.

Trapezoidal Frame

Find: The reaction forces and bending moments.

Solution: From the diagram at the top of Table 5-4,

$$ F = { I_2 \over I_1 } \left({s \over b}\right) = { 1.5 \over 1 } \left({5 \sqrt{5} \over 15}\right) = 1.12 $$ $$ G = 3 + 2F = 3 + 2(1.12) = 5.24 $$
$$ I_1 = 1 ~\text{in.}^4 $$ $$ I_2 = 1.5 ~\text{in.}^4 $$
$$ a = 5 ~\text{in.} $$ $$ b = 15 ~\text{in.} $$
$$ h = 10 ~\text{in.} $$ $$ s = 5 \sqrt{5} ~\text{in.} $$

From Table 5-4, case 2,

$$ V_A = { P(a + d) \over L } = { 1000 (5 + 7.5) \over 25 } = 500 ~\text{lb.} $$ $$ V_B = P - V_A = 1000 - 500 = 500 ~\text{lb.} $$ $$ H_A = H_B = { P \over 2h } \left( a + { 3 c d \over b G } \right) = { 1000 \over 2(10) } \left[ 5 + { 3(7.5)(7.5) \over 15(5.24) } \right] = 357 ~\text{lb.} $$

A free-body diagram may be constructed for a section of the frame leg, as shown in Figure 5-15. Equating the sum of the moment to zero gives

$$ M = -500 x_1 + 357 (2 x_1) = 214 x_1 $$
Section of Frame Leg

At the left frame joint,

$$ M = 214x = 214(5) = 1070 ~\text{in.lb.} $$

A free-body diagram may now be drawn for a section of the horizontal portion of the frame to the left of the load as in Figure 5-16. Equating the sum of the moments to zero gives

$$ M = 1070 - 500 x_2 $$

By considering symmetry, the moment diagram of the given frame may be drawn as shown in Figure 5-17.

Section of Horizontal Portion of Frame

Moment. Diagram for Trapezoidal Frame